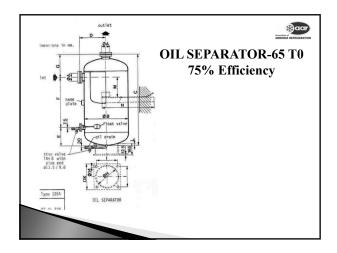
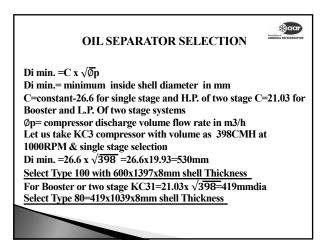
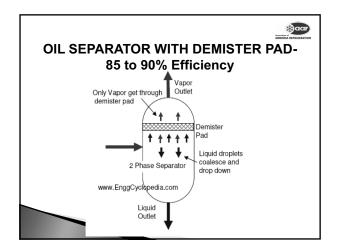


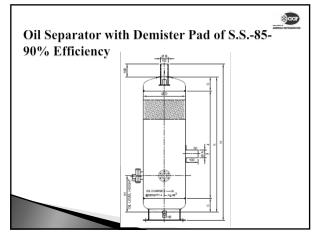
aar

from Compressor

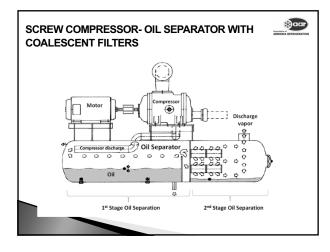

ا9 Jan 2018 AAR ARCON 2018 Dihi

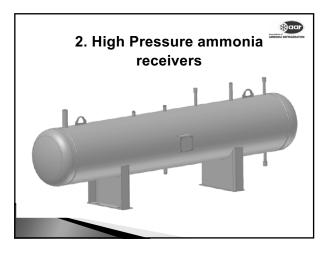

-

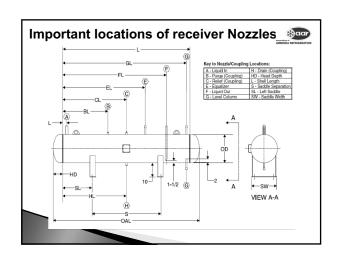

THICKNESS CALCULATIONS							
ITEM	Value	Unit	Value	Unit			
Ρ	300	Psi	21.1	Kg/cm ²			
R	15	Inch	381	Mm			
S	17500	Psi	1230.4	Kg/cm ²			
E	0.7	%	0.7	%			
t= 4500/(mm Add cor Thicknes	12250-180 rosion all ss require	00SxE0.7-(0)12070= (owance o d is-11.07 n ze as 12mm).37 inch c f 1.6 mm nm				

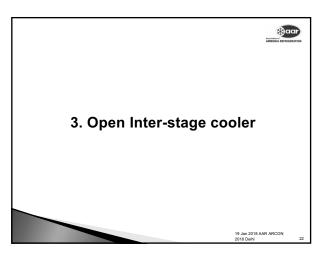

Recommended Thickness for Various Sizes						
Vessel	Thickness-	Dish end				
Diameter-	mm	Thickness-				
inch	516 Gr.70	mm				
24	10	10				
30	12	12				
36	14	14				
42	16	16				
48	18	18				





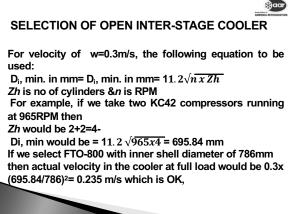


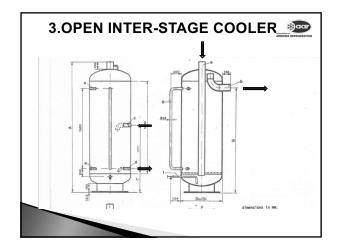


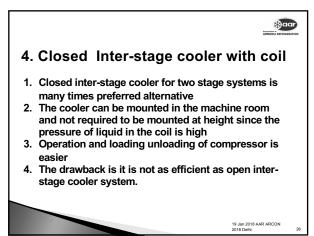

aar 2. High Pressure Liquid Receiver it

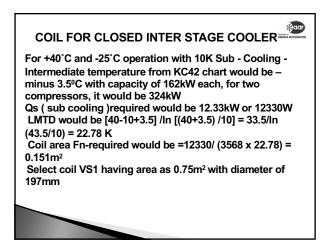
- 1.Selection of receiver is done based on the assumption that should be able to accommodate entire charge of refrigeration system
- 2. This is essential as if one wants to do some repairs, attend leakages, do some piping welding etc. one should be able to pump entire refrigeration system in this receiver, close the king valve and then carry the modifications/repairs.
- 3. The receiver should be selected so that when ammonia is pumped down, the level of liquid should be not more than 80-85%
- 4. Many times a standby receiver is provided as per requirement

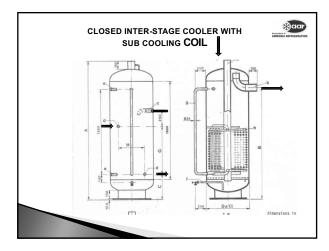
19 Jan 2018 AAR ARCON 2018 Delhi

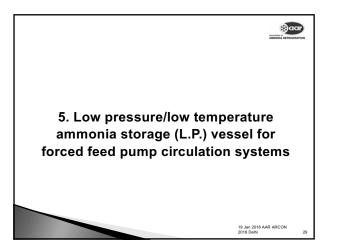


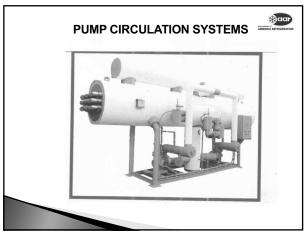

	MAWP	VESSEL		Dry Weight	VOLUME (2)	B-717 ⁽³⁾		
	(psig)	OD (in.)	OAL (in.)	(lb)	(ft3)	(lbf)	L	HD
HR-20-110	300	20	110%	850	17.9	592	96	73/16
HR-20-134	300	20	134%	1,030	22.0	726	120	73/16
HR-24-136	300	24	136%	1,260	32.4	1,069	120	83/16
HR-24-160	300	24	160%	1,480	38.3	1,264	144	83/16
HR-24-184	300	24	184%	1,700	44.2	1,459	168	83/16
HR-30-163	250	30	163%	1,880	61.3	2,027	144	911/16
HR-30-187	250	30	187%	2,160	70.7	2,336	168	911/16
HR-30-207	250	30	207%	2,390	78.5	2,593	188	911/16
HR-36-166	250	36	166%	2,300	90.2	2,982	144	113/16
HR-36-190	250	36	190%	2,630	103.8	3,430	168	113/16
HR-36-210	250	36	210%	2,910	115.1	3,803	188	113/16
HR-42-193	250	42	193%	3,120	143.7	4,748	168	1211/16
HR-42-213	250	42	213%	3,440	159.1	5,259	188	1211/16
HR-48-196	250	48	196½	4,820	188.4	6,228	168	141/4
HR-48-216	250	48	216½	5,310	208.5	6,891	188	141/4
HR-54-199	250	54	199½	5,500	242.2	8,004	168	15¾
HR-54-219	250	54	219½	6,060	267.7	8,848	188	15¾
HR-60-202	250	60	2021/2	6,210	303.2	10,023	168	17¼
HR-60-222	250	60	2221/2	6,820	334.9	11,069	188	17¼
HR-60-246	250	60	2461/2	7,560	372.9	12,324	212	17¼
HR-72-232	250	72	232%	10,690	499.6	16,512	192	205/16
HR-72-256	250	72	256%	11,800	554.2	18,317	216	205/16
HR-72-276	250	72	276%	12,720	599.7	19,821	236	205/16
HR-84-238	250	84	238¾	15,340	691.4	22,853	192	23%
HR-84-262	250	84	262¾	16,890	765.6	25,307	216	23%
HR-84-282	250	84	28234	18,190	827.5	27,352	236	23%
HR-96-244	250	96	244¾	17,980	923.4	30,521	192	26%
HD-96-268	250	96	2683/	19 750	1 020 8	33 741	216	263/4

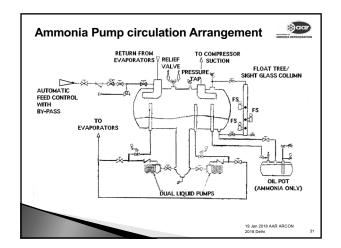


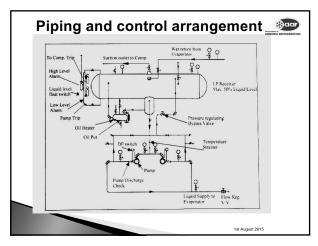

3. Inter-stage cooler selection 1. Inter-stage coolers are required for two stage ammonia systems. The open type coolers are most efficient and consume minimum power. used: 2. Installation and operation requires skilled man power. Zh is no of cylinders &n is RPM The vessel should be installed above the inlet 3. connection of L.P. vessel to get ammonia liquid at 965RPM then flowing in the L.P. vessel due to very low pressure Zh would be 2+2=4difference and help of gravity is needed many times 4. It is also essential that compressor cylinders are loaded cautiously so as to ensure that inter-stage not exceed manufacturer's pressure does allewable limit.

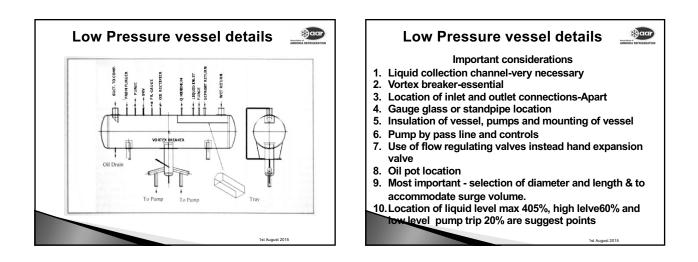

19 Jan 2018 AAR ARCON 2018 Delhi

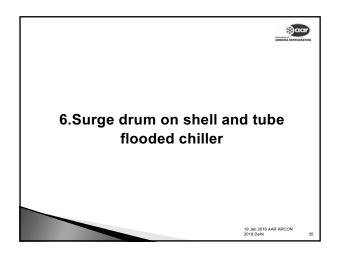


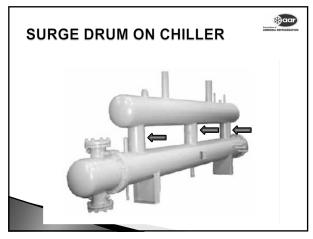


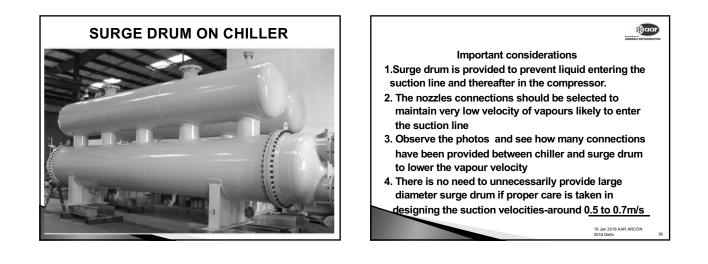


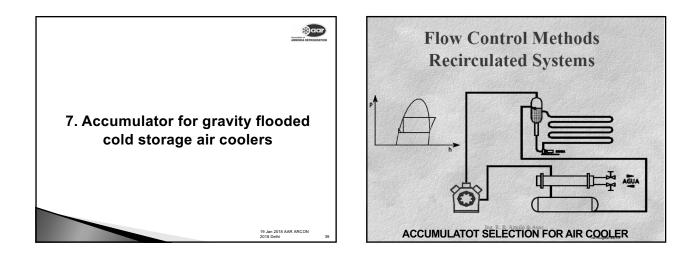


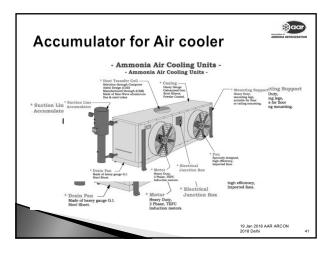


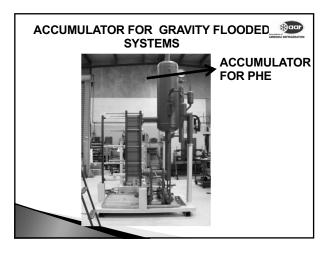


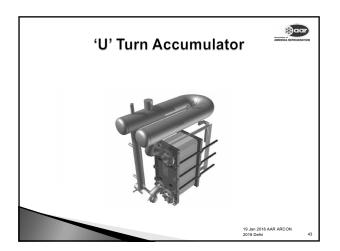


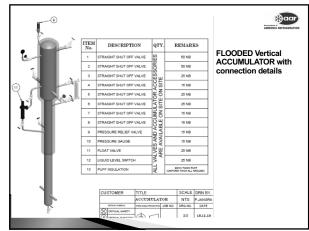


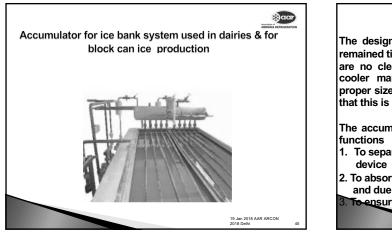


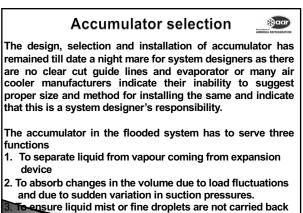


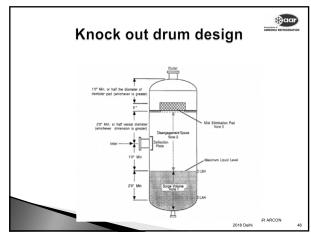


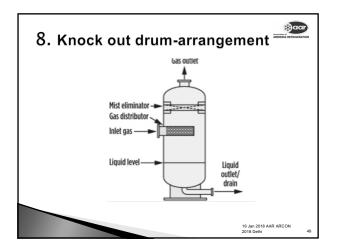


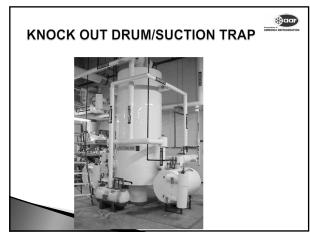






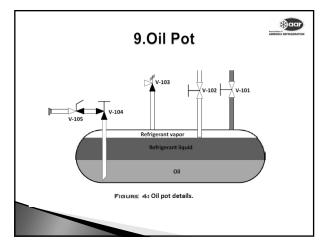


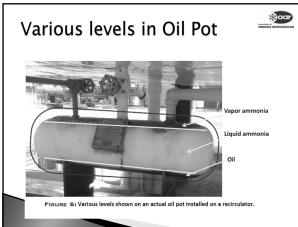

9 Jan 2018 AAR ARCON


o compressor

aar Accumulator sizing 3. There are two forces acting on the liquid droplet-one is gravity pull and other is compressor suction pull. 4. Many times if the accumulator design is done on the basis of calculation of droplet size and separation velocity the diameter calculated works out to be quite small, but one must also consider the liquid volume stored in the air cooler which is likely to enter the accumulator if the suction pressure drops suddenly due to load fluctuations. It is therefore essential to accommodate entire internal volume of liquid in the accumulator design over the normal liquid level and hence the diameter or height has to be increased accordingly. 5. Because the static head of the liquid leg results in a higher pressure at the bottom of the leg, the evaporating temperature is higher at the lower section of the evaporator, which reduces heat transfer rate. In low temperature evaporators it becomes more crucial to keep the static head at a minimum.

> 19 Jan 2018 AAR ARCON 2018 Delhi 4





aar KNOCK OUT DRUM DESIGN BASICS 1. Surge drum volume is determined by the maximum potential liquid loading and the amount of fill time desired from the high level alarm(LAH) and high level shut down(LSH). 2. Compressor K.O. Pots are recommended to have minimum 5 minute fill time. The distance between maximum liquid level & the inlet pipe is recommended to be minimum 1ft. To minimize splashing and liquid surge. 3. The distance required from disengaging the liquid from gas is determined by the particle size and terminal velocity. 'K' value of 0.15 to 0.17 at a disengagement distance of 24" provides adequate separation for basic gravity separation that do not have mist pads Mist eliminators are however recommended for all K.O. drums. With mist eliminators the K value can be no more

than 0.35 to control liquid carry over.

